Research

A Fully Resilient Cyber-Secure Synchronization Strategy for AC Microgrids

Abstract

This letter focuses on resilient synchronization in networked AC microgrids under cyber-attacks, where attackers aim to desynchronize converters by injecting bounded false data to communication and control channels. To this end, a resilient cooperative control framework for the secondary frequency regulation in AC microgrids is developed. The proposed resilient distributed control strategy achieves synchronization regardless of the existence of cyber-attacks. Moreover, it offers the maximum level of resilience, i.e. it guarantees resilient synchronization even if all distributed generation units in microgrids are subject to cyber-attacks. Theoretical analysis and verification case studies are carried out in order to demonstrate the advantages and performance of the proposed resilient cooperative control.

Info

Journal Article, 2021

UN SDG Classification
DK Main Research Area

    Science/Technology

To navigate
Press Enter to select