Application of Network-Constrained Transactive Control to Electric Vehicle Charging for Secure Grid Operation.
Abstract
This paper develops a network-constrained transactive control method to integrate distributed energy resources (DERs) into a power distribution system with the purpose of optimizing the operational cost of DERs and power losses of the distribution network as well as preventing grid problems including power transformer congestion and voltage violations. In this method, a price coordinator is introduced to facilitate the interaction between the distribution system operator (DSO) and aggregators in the smart grid. Electric vehicles are used to illustrate the proposed network-constrained transactive control method. Mathematical models are presented to describe the operation of the control method. Finally, simulations are presented to show the effectiveness of the proposed method. To guarantee its optimality, we also checked the numerical results obtained with the network-constrained transactive control method and compared them with the one solved by centralized control, and found a good performance of the proposed control method.