Research

Blackstart from HVDC-connected Offshore Wind: Hard vs Soft Energization

Abstract

In recent years, renewable energy sources have been integrated on a large scale in power systems all around the world to address the environmental sustainability concerns. With conventional thermal generators being phased out, large offshore wind power plants present a viable alternative to provide blackstart services for power system restoration. In this paper, by means of simulations, grid-forming wind turbines are shown to successfully energize the offshore transformer and the HVDC export link in a controlled manner, to ultimately supply the onshore grid. Two methods for energizing the offshore network have been compared: the prevalent hard-switching approach and the more complex soft-start method. Additionally, control has been implemented to mitigate the significant transients in the export link associated with pre-charging of the onshore converter. It is shown that soft-start can provide faster energization with smaller transients compared to hard-switching. Moreover, the sensitivity analyses performed in this study illustrate the impact of pre-insertion resistor design and voltage ramp-up rates on transients during hard-switching and soft-start, respectively. The results presented in the paper also show that a separate controlled pre-charging stage of the onshore converter from its DC terminals is essential for the safe energization and operation of the export link.

Info

Journal Article, 2021

UN SDG Classification
DK Main Research Area

    Science/Technology

To navigate
Press Enter to select