Research

Contextual anomaly detection for cyber-physical security in Smart Grids based on an artificial neural network model

Abstract

This paper presents a contextual anomaly detection method and its use in the discovery of malicious voltage control actions in the low voltage distribution grid. The model-based anomaly detection uses an artificial neural network model to identify a distributed energy resource’s behaviour under control. An intrusion detection system observes distributed energy resource’s behaviour, control actions and the power system impact, and is tested together with an ongoing voltage control attack in a co-simulation set-up. The simulation results obtained with a real photovoltaic rooftop power plant data show that the contextual anomaly detection performs on average 55% better in the control detection and over 56% better in the malicious control detection over the point anomaly detection.

Info

Conference Paper, 2016

UN SDG Classification
DK Main Research Area

    Science/Technology

To navigate
Press Enter to select