Eco-hydrological process simulations within an integrated surface water-groundwater model
Abstract
Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework that allows hydrologists and ecologists to represent the complex and dynamic interactions occurring between surface water, ground water, water quality and freshwater ecosystems within a catchment. We demonstrate here the practical application of this tool to two case studies where the interaction of surface water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention. In the second, we examine ecological impacts related to the flows and temperatures in the Silver Creek ecosystem that are important for the fish habitat. The Silver Creek ecosystem is controlled by large-scale interactions of surface water and groundwater systems in the Lower Wood River Valley, USA. In particular, the impacts of different catchment management scenarios on the ecosystem are evaluated.