How Can Blockchain Technology Accelerate Energy Efficiency Interventions? A Use Case Comparison
Abstract
This paper qualitatively evaluates the application of blockchain technology for three energy efficiency use cases. To achieve the Sustainable Development Agenda, energy efficiency improvements have to double by 2030. However, the adoption of energy efficiency interventions is slow due to several market barriers. Blockchain technology is a nascent technology with the potential to address these barriers or even fundamentally change energy system designs, by enabling transparent, decentralised, and tamper-resilient systems. Nevertheless, a blockchain application comes with trade-offs and needs to be considered on a case by case basis. In this paper, we examine the benefits and constraints of a blockchain application for three different approaches to achieving energy efficiency: (i) peer-to-peer (P2P) energy trading; (ii) White Certificate Scheme (WCS); and (iii) Energy Service Companies (ESCOs). For each of these cases, we apply a decision framework to assess blockchain feasibility and outline a potential blockchain-based design. The analysis shows that blockchain functions are case dependent and that an application creates different governance and system designs due to varying case characteristics. We discuss how the identified blockchain adoption barriers can be overcome and stress the need for policy action to advance the development of pilot studies. By decentralising system governance, blockchain enables innovative designs that can accelerate the implementation of energy efficiency interventions.