Inversion and validation of improved marine gravity field recovery in South China sea by incorporating HY-2A altimeter waveform data
Abstract
HaiYang-2A (HY-2A, where 'Haiyang' means 'Ocean' in Chinese) has provided reliable sea surface height observations for gravity with uniform ocean data coverage on a global scale for more than 8 years, particularly with denser across track sampling during the geodetic mission since March 2016. This paper aims at modeling and evaluating the regional marine gravity field at 1′x1′ resolution by incorporating HY-2A altimeter waveform data from 7 complete 168-day cycles in the geodetic mission phase. Initial evaluation indicates that, firstly, the measurements in the geodetic mission stay at a consistent accuracy level with observations at the start-of-life stage according to statistics of discrepancies at crossover points cycle by cycle. Secondly, range precision improvement can be achieved using a two-pass weighted least-squares retracker. Thirdly, a downsampling procedure combined with a low-pass filter is designed for HY-2A 20 Hz data to obtain 5 Hz measurements with enhanced precision. We calculate the 1′x1′ marine gravity field model over the South China Sea area by using the EGM2008 model as a reference field with the remove/restore method. The verifications with published models and shipborne gravimetric data show that HY-2A GM data is capable of improving marine gravity field modeling. Results show slightly higher accuracy than other models with similar input datasets but not including HY-2A. The accuracy is also compared with the latest DTU17 and SIO V27.1 model.