Research

Large scale automated phylogenomic analysis of bacterial isolates and the Evergreen Online platform

Abstract

Public health authorities whole-genome sequence thousands of isolates each month for microbial diagnostics and surveillance of pathogenic bacteria. The computational methods have not kept up with the deluge of data and the need for real-time results. We have therefore created a bioinformatics pipeline for rapid subtyping and continuous phylogenomic analysis of bacterial samples, suited for large-scale surveillance. The data is divided into sets by mapping to reference genomes, then consensus sequences are generated. Nucleotide based genetic distance is calculated between the sequences in each set, and isolates are clustered together at 10 single-nucleotide polymorphisms. Phylogenetic trees are inferred from the non-redundant sequences and the clustered isolates are added back. The method is accurate at grouping outbreak strains together, while discriminating them from non-outbreak strains. The pipeline is applied in Evergreen Online, which processes publicly available sequencing data from foodborne bacterial pathogens on a daily basis, updating phylogenetic trees as needed.

Info

Journal Article, 2020

UN SDG Classification
DK Main Research Area

    Science/Technology

To navigate
Press Enter to select