New cubic perovskites for one- and two-photon water splitting using the computational materials repository
Abstract
A new efficient photoelectrochemical cell (PEC) is one of the possible solutions to the energy and climate problems of our time. Such a device requires development of new semiconducting materials with tailored properties with respect to stability and light absorption. Here we perform computational screening of around 19 000 oxides, oxynitrides, oxysulfides, oxyfluorides, and oxyfluoronitrides in the cubic perovskite structure with PEC applications in mind. We address three main applications: light absorbers for one- and two-photon water splitting and high-stability transparent shields to protect against corrosion. We end up with 20, 12, and 15 different combinations of oxides, oxynitrides and oxyfluorides, respectively, inviting further experimental investigation.