Research

Optimal Scheduling of Biogas-Solar-Wind Renewable Portfolio for Multi-Carrier Energy Supplies

Abstract

This paper proposes a multi-source multi-product framework for coupled multi-carrier energy supplies with a biogas-solar-wind hybrid renewable system. In this framework, the biogas-solar-wind complementarities are fully exploited based on digesting thermodynamic effects for the synergetic interactions of electricity, gas and heating energy flows, and a coupling matrix is formulated for the modeling of production, conversion, storage, and consumption of different energy carriers. The multi-energy complementarity of biogas-solar-wind renewable portfolio can be utilized to facilitate the mitigation of renewable intermittency and the efficient utilization of batteries, and a multi-carrier generation scheduling scheme is further presented to dynamically optimize dispatch factors in the coupling matrix for energy-efficient con-version and storage, while different energy demands of end-users are satisfied. The proposed methodology has been fully tested and benchmarked on a stand-alone Microgrid over a 24-hour scheduling horizon. Comparative results demonstrate that the proposed scheme can lower the battery charging/discharging actions as well as the degradation cost, and also confirm its capability to accommodate high penetration of variable renewables

Info

Journal Article, 2018

UN SDG Classification
DK Main Research Area

    Science/Technology

To navigate
Press Enter to select