Research

Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates

Abstract

Here, we present a process based on roll-to-roll (R2R) technology which allows for very fast processing of polymer thermoelectric (TE) devices and we furthermore demonstrate a simplified but more efficient way of serially connecting these devices by means of R2R thin-film processing. The new device architecture makes it possible to use only one TE material (opposed to two materials which are employed in well-known Peltier elements), and a total of 18,000 serially connected junctions were prepared by flexoprinting of silver electrodes and by rotary screen printing of poly(3,4 ethylenedioxythiophene) (PEDOT):polystyrene sulfonate (PSS) as the TE material. Testing of devices revealed that the new architecture clearly showed to be functioning as expected, but also pointed toward challenges for thin-film TE development which is the influence of the substrate thickness on the thermal gradient over a device and the currently low performance available. A life-cycle assessment (LCA) was carried out in order to evaluate the sustainability of the new architecture and to estimate the requirements for development of a successful technology.

Info

Journal Article, 2013

UN SDG Classification
DK Main Research Area

    Science/Technology

To navigate
Press Enter to select