Research

Predicting dynamic fuel oil consumption on ships with automated machine learning

Abstract

This study demonstrates a method for predicting the dynamic fuel consumption on board ships using automated machine learning algorithms, fed only with data for larger time intervals from 12 hours up to 96 hours. The machine learning algorithm trained on dynamic data from shorter time intervals of the engine features together with longer time interval data for the fuel consumption. To give the operator and ship owner real-time energy efficiency statistics, it is essential to be able to predict the dynamic fuel oil consumption. The conventional approach to getting these data is by installing additional mass flow meters, but these come with added cost and complexity. In this study, we propose a machine learning approach using auto machine learning optimisation, with already available data from the machinery logging system.

Info

Journal Article, 2019

UN SDG Classification
DK Main Research Area

    Science/Technology

To navigate
Press Enter to select