Robust Numerical Methods for Nonlinear Wave-Structure Interaction in a Moving Frame of Reference
In DCAMM Special Report, 2016
Abstract
This project is focused on improving the state of the art for predicting the interaction between nonlinear ocean waves and marine structures. To achieve this goal, a flexible order finite difference potential flow solver has been extended to calculate for fully nonlinear wave-structure interaction problems at forward speed. The model utilises the effciency of finite difference methods on structured grids and exploits the flexibility of a novel Immersed Boundary Method (IBM) based on Weighted Least Squares (WLS) for the approximation of the no-flux boundary condition on the body surface. As a result, the grid generation is very simple and the need for regridding when considering moving body problems is avoided. The temporal oscillations related to the IBM method and moving boundaries are minimized by sufficient spatial resolution and an increased time-step size. The time-dependant physical domain is mapped to a time-invariant com-putational domain with a sigma transformation. For a smooth and continuous transformation a C2 continuous free surface is required over the entire domain. Thus, an arti˝cial free surface that respects this property is created in the inte-rior of the body using a seventh order polynomial.The forward speed problem is formulated in a moving coordinate system attached to the mean position of the body. Robust approximations for all combinations of forward speed and wave velocity are obtained by expressing the free surface boundary conditions in Hamilton-Jacobi form and using a Weighted Es-sentially Non-Oscillatory (WENO) scheme for the convective derivatives. The linear WENO weights are derived with a new procedure that is suitable for numerical implementation and avoids the limitations of existing tabulated WENO coefficients. Furthermore, a simplifed smoothness indicator that performs as well as the tabulated versions is proposed. Explicit high-order Runge-Kutta time integration and a Lax-Friedrichs-type numerical flux complete the scheme. The solver was tested on the two-dimensional zero speed wave radiation problem and the steady forward speed problem with satisfactory results and thus, the proof of concept for extending the methodology to three dimensions is established.