Abstract
Complex marine operations are moving further from shore, into deeper waters, and harsher environments. The operating hours of a vessel are weather dependent, and good knowledge of the prevailing weather conditions may ensure cost-efficient and safe operations. This paper considers the estimation of the peak wave frequency of the on-site sea state based on the vessel’s motion in waves. A sea state can be described by significant wave height, peak wave frequency, wave direction, and often wind speed and direction are added as well. The signal-based algorithm presented in this paper is based on Fourier transforms of the vessel response in heave, roll and pitch. The measurements are used directly to obtain an estimate of the peak frequency of the waves. Experimental results from model-scale offshore ship runs at the Marine Cybernetics Laboratory (MCLab) at NTNU demonstrate the performance of the proposed sea state estimation algorithm.